220 research outputs found

    Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    Full text link
    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization dataset at 1.4 GHz covering an area of 1060 deg2^2. The data analyzed are a combination of data from the 100-m Effelsberg Telescope, the 26-m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ≈60\ell \approx 60 to ℓ≈104\ell \approx 10^4 and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b=9∘b= 9^{\circ}, associated with the disk-halo transition in a 15∘^{\circ} region around l=108∘l=108^{\circ}. Localized variations in the index are found toward HII regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα\alpha emission) indicating that the thermal emission depolarizes background synchrotron emission.Comment: Accepted to ApJ; 17 page

    Radio continuum and polarization study of SNR G57.2+0.8 associated with magnetar SGR1935+2154

    Full text link
    We present a radio continuum and linear polarization study of the Galactic supernova remnant G57.2+0.8, which may host the recently discovered magnetar SGR1935+2154. The radio SNR shows the typical radio continuum spectrum of a mature supernova remnant with a spectral index of α=−0.55±0.02\alpha = -0.55 \pm 0.02 and moderate polarized intensity. Magnetic field vectors indicate a tangential magnetic field, expected for an evolved SNR, in one part of the SNR and a radial magnetic field in the other. The latter can be explained by an overlapping arc-like feature, perhaps a pulsar wind nebula, emanating from the magnetar. The presence of a pulsar wind nebula is supported by the low average braking index of 1.2, we extrapolated for the magnetar, and the detection of diffuse X-ray emission around it. We found a distance of 12.5 kpc for the SNR, which identifies G57.2+0.8 as a resident of the Outer spiral arm of the Milky Way. The SNR has a radius of about 20 pc and could be as old as 41,000 years. The SNR has already entered the radiative or pressure-driven snowplow phase of its evolution. We compared independently determined characteristics like age and distance for both, the SNR and SGR1935+2154, and conclude that they are physically related.Comment: accepted by The Astrophysical Journal, 16 pages, 10 figure

    G181.1+9.5, a new high-latitude low-surface brightness supernova remnant

    Full text link
    More than 90% of the known Milky Way supernova remnants are within 5 degrees of the Galactic Plane. We present the discovery of the supernova remnant G181.1+9.5, a new high-latitude SNR, serendipitously discovered in an ongoing survey of the Galactic Anti-centre High-Velocity Cloud complex, observed with the DRAO Synthesis Telescope in the 21~cm radio continuum and HI spectral line. We use radio continuum observations (including the linearly polarized component) at 1420~MHz (observed with the DRAO ST) and 4850~MHz (observed with the Effelsberg 100-m radio telescope) to map G181.1+9.5 and determine its nature as a SNR. High-resolution 21~cm HI line observations and HI emission and absorption spectra reveal the physical characteristics of its local interstellar environment. Finally, we estimate the basic physical parameters of G181.1+9.5 using models for highly-evolved SNRs. G181.1+9.5 has a circular shell-like morphology with a radius of about 16~pc at a distance of 1.5 kpc some 250 pc above the mid-plane. The radio observations reveal highly linearly polarized emission with a non-thermal spectrum. Archival ROSAT X-ray data reveal high-energy emission from the interior of G181.1+9.5 indicative of the presence of shock-heated ejecta. The SNR is in the advanced radiative phase of SNR evolution, expanding into the HVC inter-cloud medium with a density of 1 cm~cm^{-3}$. Basic physical attributes of G181.1+9.5 calculated with radiative SNR models show an upper-limit age of 16,000 years, a swept-up mass of more than 300 solar masses, and an ambient density in agreement with that estimated from HI observations. G181.1+9.5 shows all characteristics of a typical mature shell-type SNR, but its observed faintness is unusual and requires further study.Comment: A&A accepted, 11 pages, 13 figure

    A high frequency radio study of G11.2-0.3, a historical supernova remnant with a flat spectrum core

    Get PDF
    We present radio maps of the historical supernova remnant G11.2-0.3 in the frequency range from 4.85 GHz to 32 GHz. The integrated spectrum with \alpha = -0.50 (S ~ \nu^\alpha) is dominated by its steep spectrum shell emission (\alpha ~ -0.57), although a flat spectrum core structure classifies G11.2-0.3 as a composite supernova remnant. A radial magnetic field structure is observed. An analysis of the multi-frequency polarization data results in highly varying rotation measures along the shell. The percentage polarization is rather low (~2%) and we conclude that G11.2-0.3 is in the transient phase from free to adiabatic expansion. The central flat spectrum component is partly resolved. A compact radio source with an inverted spectrum likely coincides with the previously detected X-ray pulsar (Torii et al. (1997). Two symmetric structures with flat radio spectra possibly indicate a bipolar outflow. Combining available X-ray and radio data we conclude that G11.2-0.3 is likely the remnant of a type II supernova explosion with an early type B progenitor star

    Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Full text link
    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5'' from the point source, a distance consistent with the sizes of resolved wind termination shocks around many Vela-like pulsars. Finally, we argue based on synchrotron lifetimes in the estimated nebular magnetic field that DA 495 represents a rare pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind, and that this high magnetization factor may account for the nebula's low luminosity.Comment: 26 pages, 5 figures, AASTeX preprint style. Accepted for publication in The Astrophysical Journa

    Three-Dimensional Structure of the Magnetic Field in the Disk of the Milky Way

    Full text link
    We present Rotation Measures (RM) of the diffuse Galactic synchrotron emission from the Canadian Galactic Plane Survey (CGPS) and compare them to RMs of extragalactic sources in order to study the large-scale reversal in the Galactic magnetic field (GMF). Using Stokes Q, U and I measurements of the Galactic disk collected with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, we calculate RMs over an extended region of the sky, focusing on the low longitude range of the CGPS (l=52deg to l=72deg). We note the similarity in the structures traced by the compact sources and the extended emission and highlight the presence of a gradient in the RM map across an approximately diagonal line, which we identify with the well-known field reversal of the Sagittarius-Carina arm. We suggest that the orientation of this reversal is a geometric effect resulting from our location within a GMF structure arising from current sheets that are not perpendicular to the Galactic plane, as is required for a strictly radial field reversal, but that have at least some component parallel to the disk. Examples of models that fit this description are the three-dimensional dynamo-based model of Gressel et al. (2013) and a Galactic scale Parker spiral (Akasofu & Hakamada 1982), although the latter may be problematic in terms of Galactic dynamics. We emphasize the importance of constructing three-dimensional models of the GMF to account for structures like the diagonal RM gradient observed in this dataset.Comment: Published in Astronomy and Astrophysics, Accepted 23 April, 201

    The JCMT 12CO(3-2) Survey of the Cygnus X Region: I. A Pathfinder

    Full text link
    Cygnus X is one of the most complex areas in the sky. This complicates interpretation, but also creates the opportunity to investigate accretion into molecular clouds and many subsequent stages of star formation, all within one small field of view. Understanding large complexes like Cygnus X is the key to understanding the dominant role that massive star complexes play in galaxies across the Universe. The main goal of this study is to establish feasibility of a high-resolution CO survey of the entire Cygnus X region by observing part of it as a Pathfinder, and to evaluate the survey as a tool for investigating the star-formation process. A 2x4 degree area of the Cygnus X region has been mapped in the 12CO(3-2) line at an angular resolution of 15" and a velocity resolution of ~0.4km/s using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation process is heavily connected to the life-cycle of the molecular material in the interstellar medium. The high critical density of the 12CO(3-2) transition reveals clouds in key stages of molecule formation, and shows processes that turn a molecular cloud into a star. We observed ~15% of Cygnus X, and demonstrated that a full survey would be feasible and rewarding. We detected three distinct layers of 12CO(3-2) emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to DR21 (1.5-2.5 kpc). Within the Cygnus Rift, HI self-absorption features are tightly correlated with faint diffuse CO emission, while HISA features in the DR21 layer are mostly unrelated to any CO emission. 47 molecular outflows were detected in the Pathfinder, 27 of them previously unknown. Sequentially triggered star formation is a widespread phenomenon.Comment: 18 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Magnetic fields of the W4 superbubble

    Full text link
    Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. New sensitive radio continuum observations were made at 6 cm, 11 cm, and 21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne , we obtain the thermal electron density ne = 1.0/\sqrt{fne} (\pm5%) cm^-3 and the strength of the line-of-sight component of the magnetic field B// = -5.0/\sqrt{fne} (\pm10%) {\mu}G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 {\mu}G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case that the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.Comment: 13 pages, 8 figures, accepted for publication in Astronomy & Astrophysic
    • 

    corecore